A Critical-Siphon Approach to Fastest Deadlock Controller for S3PR

Author:

Chao Daniel Yuh1

Affiliation:

1. National Cheng Chi University, China

Abstract

The authors developed a theory to show that exactly one monitor is required for the set of siphons in the family of 2-compound siphons and how to assign its initial markings. This avoids redundant monitors and the unnecessary associated computational burden. Neither reachability graph nor minimal siphon needs to be computed to achieve polynomial complexity—essential for large systems. This chapter redevelops the theory more formally and further applies this approach to two well-known S3PR to obtain a controller full or near maximally permissive, where Weighted Control (WC) arcs are nevertheless necessary to keep the controlled model maximally permissive. However, optimal control for siphons involving WC arcs are still under research. As many as possible for simpler structures are desired to reduce WC arcs. In addition, fast computation is important for dynamic reconfiguration situations. The authors develop a single theorem to identify the condition where WC places cannot be replaced by Ordinary Control (OC) arcs, while others can be replaced.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3