Implementation of Mining Techniques to Enhance Discovery in Service-Oriented Computing

Author:

Surianarayanan Chellammal1,Ganapathy Gopinath1

Affiliation:

1. Bharathidasan University, India

Abstract

Web services have become the de facto platform for developing enterprise applications using existing interoperable and reusable services that are accessible over networks. Development of any service-based application involves the process of discovering and combining one or more required services (i.e. service discovery) from the available services, which are quite large in number. With the availability of several services, manually discovering required services becomes impractical and time consuming. In applications having composition or dynamic needs, manual discovery even prohibits the usage of services itself. Therefore, effective techniques which extract relevant services from huge service repositories in relatively short intervals of time are crucial. Discovery of service usage patterns and associations/relationships among atomic services would facilitate efficient service composition. Further, with availability of several services, it is more likely to find many matched services for a given query, and hence, efficient methods are required to present the results in useful form to enable the client to choose the best one. Data mining provides well known exploratory techniques to extract relevant and useful information from huge data repositories. In this chapter, an overview of various issues of service discovery and composition and how they can be resolved using data mining methods are presented. Various research works that employ data mining methods for discovery and composition are reviewed and classified. A case study is presented that serves as a proof of concept for how data mining techniques can enhance semantic service discovery.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3