A Layered Parameterized Framework for Intelligent Information Retrieval in Dynamic Social Network using Data Mining

Author:

Sonkar Shailendra Kumar1,Bhatnagar Vishal2,Challa Rama Krishna1

Affiliation:

1. National Institute of Technical Teacher's Training and Research, India

2. Ambedkar Institute of Advanced Communication Technologies and Research, India

Abstract

Dynamic social networks contain vast amounts of data, which is changing continuously. A search in a dynamic social network does not guarantee relevant, filtered, and timely information to the users all the time. There should be some sequential processes to apply some techniques and store the information internally that provides the relevant, filtered, and timely information to the users. In this chapter, the authors categorize the social network users into different age groups and identify the suitable and appropriate parameters, then assign these parameters to the already categorized age groups and propose a layered parameterized framework for intelligent information retrieval in dynamic social network using different techniques of data mining. The primary data mining techniques like clustering group the different groups of social network users based on similarities between key parameter items and by classifying the different classes of social network users based on differences among key parameter items, and it can be association rule mining, which finds the frequent social network users from the available users.

Publisher

IGI Global

Reference43 articles.

1. Ballocca, G., Politi, R., Ruffo, G., & Schifanella, R. (2003). Integrated techniques and tools for Web mining, user profiling and benchmarking analysis. In Proceedings of CMG’03. CMG.

2. Baranyi, P., Gedeon, T. D., & Koczy, L. T. (1998). Intelligent Information Retrieval Using Fuzzy Approach. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, (Vol. 2, pp. 1984-1989). IEEE.

3. Belkin, N. J. (1996). Intelligent Information Retrieval: Who’s Intelligent? In Proceedings des 5. International Symposium for Informationswissenschaft (ISI 96), (pp. 25-31). ISI.

4. Cesarano, C., d’Aciemo, A., & Picariello, A. (2003). An Intelligent Search Agent System for Semantic Information Retrieval on the Internet. In Proceedings of the 5th ACM international workshop on Web information and data management, (pp. 111-117). ACM.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3