Pattern Based Feature Construction in Semantic Data Mining

Author:

Ławrynowicz Agnieszka1,Potoniec Jędrzej1

Affiliation:

1. Poznan University of Technology, Poland

Abstract

The authors propose a new method for mining sets of patterns for classification, where patterns are represented as SPARQL queries over RDFS. The method contributes to so-called semantic data mining, a data mining approach where domain ontologies are used as background knowledge, and where the new challenge is to mine knowledge encoded in domain ontologies, rather than only purely empirical data. The authors have developed a tool that implements this approach. Using this the authors have conducted an experimental evaluation including comparison of our method to state-of-the-art approaches to classification of semantic data and an experimental study within emerging subfield of meta-learning called semantic meta-mining. The most important research contributions of the paper to the state-of-art are as follows. For pattern mining research or relational learning in general, the paper contributes a new algorithm for discovery of new type of patterns. For Semantic Web research, it theoretically and empirically illustrates how semantic, structured data can be used in traditional machine learning methods through a pattern-based approach for constructing semantic features.

Publisher

IGI Global

Reference69 articles.

1. A review of recent research in metareasoning and metalearning.;M. L.Anderson;AI Magazine,2007

2. The Expressive Power of SPARQL

3. The Semantic Web

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3