Analysis and Integration of Biological Data

Author:

Milone Diego1,Stegmayer Georgina2,Gerard Matías3,Kamenetzky Laura4,López Mariana4,Carrari Fernando4

Affiliation:

1. Universidad Nacional del Litoral & National Scientific and Technical Research Council, Argentina

2. Universidad Tecnologica Nacional & National Scientific and Technical Research Council, Argentina

3. Universidad Nacional del Litoral & Universidad Tecnologica Nacional & National Scientific and Technical Research Council, Argentina

4. Institute of Biotechnology, INTA & National Scientific and Technical Research Council, Argentina

Abstract

The volume of information derived from post genomic technologies is rapidly increasing. Due to the amount of involved data, novel computational methods are needed for the analysis and knowledge discovery into the massive data sets produced by these new technologies. Furthermore, data integration is also gaining attention for merging signals from different sources in order to discover unknown relations. This chapter presents a pipeline for biological data integration and discovery of a priori unknown relationships between gene expressions and metabolite accumulations. In this pipeline, two standard clustering methods are compared against a novel neural network approach. The neural model provides a simple visualization interface for identification of coordinated patterns variations, independently of the number of produced clusters. Several quality measurements have been defined for the evaluation of the clustering results obtained on a case study involving transcriptomic and metabolomic profiles from tomato fruits. Moreover, a method is proposed for the evaluation of the biological significance of the clusters found. The neural model has shown a high performance in most of the quality measures, with internal coherence in all the identified clusters and better visualization capabilities.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3