Affiliation:
1. Free University of Bozen-Bolzano, Italy & INRIA Saclay, France
2. Télécom ParisTech, France
Abstract
This chapter deals with data mining in uncertain XML data models, whose uncertainty typically comes from imprecise automatic processes. We first review the literature on modeling uncertain data, starting with well-studied relational models and moving then to their semistructured counterparts. We focus on a specific probabilistic XML model, which allows representing arbitrary finite distributions of XML documents, and has been extended to also allow continuous distributions of data values. We summarize previous work on querying this uncertain data model and show how to apply the corresponding techniques to several data mining tasks, exemplified through use cases on two running examples.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献