Database Analysis with ANNs by means of Graph Evolution

Author:

Rivero Daniel1,Dorado Julián1,Rabuñal Juan1,Pazos Alejandro1

Affiliation:

1. University of A Coruña, Spain

Abstract

Traditionally, the development of Artificial Neural Networks (ANNs) is a slow process guided by the expert knowledge. This expert usually has to test several architectures until he finds one suitable for solving a specific problem. This makes the development of ANNs a slow process in which the expert has to do much effort. This chapter describes a new method for the development of Artificial Neural Networks, so it becomes completely automated. Since ANNs are complex structures with very high connectivity, traditional algorithms are not suitable to represent them. For this reason, in this work graphs with high connectivity that represent ANNs are evolved. In order to measure the performance of the system and to compare the results with other ANN development methods by means of Evolutionary Computation (EC) techniques, several tests were performed with problems based on some of the most used test databases in Data Mining. These comparisons show that the system achieves good results that are not only comparable to those of the already existing techniques but, in most cases, improve them.

Publisher

IGI Global

Reference32 articles.

1. Alba, E., Aldana, J. F., & Troya, J. M. (1993). Fully automatic ANN design: A genetic approach. In Proc. Int. Workshop Artificial Neural Networks (IWANN’93), (LNCS 686, pp. 399-404). Berlin: Springer-Verlag.

2. Belew, R., McInerney, J., & Schraudolph, N. (1991). Evolving networks: using the genetic algorithm with connectionist learning. In Proceedings of the Second Artificial Life Conference, (pp. 511-547). New York: Addison-Wesley.

3. An Empirical Comparison of Combinations of Evolutionary Algorithms and Neural Networks for Classification Problems

4. DasGupta, B. & Schnitger, G. (1992). Efficient approximation with neural networks: A comparison of gate functions. Dep. Comput. Sci., Pennsylvania State Univ., University Park, Tech. Rep.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3