From Non-Invasive Hemodynamic Measurements towards Patient-Specific Cardiovascular Diagnosis

Author:

Bernhard Stefan1,Al Zoukra Kristine1,Schtte Christof1

Affiliation:

1. Freie Universität Berlin, Germany

Abstract

The past two decades have seen impressive success in medical technology, generating novel experimental data at an unexpected rate. However, current computational methods cannot sufficiently manage the data analysis for interpretation, so clinical application is hindered, and the benefit for the patient is still small. Even though numerous physiological models have been developed to describe complex dynamical mechanisms, their clinical application is limited, because parameterization is crucial, and most problems are ill-posed and do not have unique solutions. However, this information deficit is imminent to physiological data, because the measurement process always contains contamination like artifacts or noise and is limited by a finite measurement precision. The lack of information in hemodynamic data measured at the outlet of the left ventricle, for example, induces an infinite number of solutions to the hemodynamic inverse problem (possible vascular morphologies that can represent the hemodynamic conditions) (Quick, 2001). Within this work, we propose that, despite these problems, the assimilation of morphological constraints, and the usage of statistical prior knowledge from clinical observations, reveals diagnostically useful information. If the morphology of the vascular network, for example, is constrained by a set of time series measurements taken at specific places of the cardiovascular system, it is possible to solve the hemodynamic inverse problem by a carefully designed mathematical forward model in combination with a Bayesian inference technique. The proposed cardiovascular system identification procedure allows us to deduce patient-specific information that can be used to diagnose a variety of cardiovascular diseases in an early state. In contrast to traditional inversion approaches, the novel method produces a distribution of physiologically interpretable models (patient-specific parameters and model states) that allow the identification of disease specific patterns that correspond to clinical diagnoses, enabling a probabilistic assessment of human health condition on the basis of a broad patient population. In the ongoing work we use this technique to identify arterial stenosis and aneurisms from anomalous patterns in signal and parameter space. The novel data mining procedure provides useful clinical information about the location of vascular defects like aneurisms and stenosis. We conclude that the Bayesian inference approach is able to solve the cardiovascular inverse problem and to interpret clinical data to allow a patient-specific model-based diagnosis of cardiovascular diseases. We think that the information-based approach provides a useful link between mathematical physiology and clinical diagnoses and that it will become constituent in the medical decision process in near future.

Publisher

IGI Global

Reference66 articles.

1. Lumped parameter models for 1-D blood flow simulations: Effect on pulse waves and parameter estimation.;J.Alastruey;Communications in Computational Physics,2008

2. Analysing the pattern of pulse waves in arterial networks: a time-domain study

3. Multi-branched model of the human arterial system

4. Physiological fluid systems modelling for non-invasive investigation.;K.Capova;Advances in Electrical and Electronic Engineering,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3