Affiliation:
1. Freie Universität Berlin, Germany
Abstract
The past two decades have seen impressive success in medical technology, generating novel experimental data at an unexpected rate. However, current computational methods cannot sufficiently manage the data analysis for interpretation, so clinical application is hindered, and the benefit for the patient is still small. Even though numerous physiological models have been developed to describe complex dynamical mechanisms, their clinical application is limited, because parameterization is crucial, and most problems are ill-posed and do not have unique solutions. However, this information deficit is imminent to physiological data, because the measurement process always contains contamination like artifacts or noise and is limited by a finite measurement precision. The lack of information in hemodynamic data measured at the outlet of the left ventricle, for example, induces an infinite number of solutions to the hemodynamic inverse problem (possible vascular morphologies that can represent the hemodynamic conditions) (Quick, 2001). Within this work, we propose that, despite these problems, the assimilation of morphological constraints, and the usage of statistical prior knowledge from clinical observations, reveals diagnostically useful information. If the morphology of the vascular network, for example, is constrained by a set of time series measurements taken at specific places of the cardiovascular system, it is possible to solve the hemodynamic inverse problem by a carefully designed mathematical forward model in combination with a Bayesian inference technique. The proposed cardiovascular system identification procedure allows us to deduce patient-specific information that can be used to diagnose a variety of cardiovascular diseases in an early state. In contrast to traditional inversion approaches, the novel method produces a distribution of physiologically interpretable models (patient-specific parameters and model states) that allow the identification of disease specific patterns that correspond to clinical diagnoses, enabling a probabilistic assessment of human health condition on the basis of a broad patient population. In the ongoing work we use this technique to identify arterial stenosis and aneurisms from anomalous patterns in signal and parameter space. The novel data mining procedure provides useful clinical information about the location of vascular defects like aneurisms and stenosis. We conclude that the Bayesian inference approach is able to solve the cardiovascular inverse problem and to interpret clinical data to allow a patient-specific model-based diagnosis of cardiovascular diseases. We think that the information-based approach provides a useful link between mathematical physiology and clinical diagnoses and that it will become constituent in the medical decision process in near future.
Reference66 articles.
1. Lumped parameter models for 1-D blood flow simulations: Effect on pulse waves and parameter estimation.;J.Alastruey;Communications in Computational Physics,2008
2. Analysing the pattern of pulse waves in arterial networks: a time-domain study
3. Multi-branched model of the human arterial system
4. Physiological fluid systems modelling for non-invasive investigation.;K.Capova;Advances in Electrical and Electronic Engineering,2002