Data Mining Techniques for Outlier Detection

Author:

Suri N1,Murty M2,Athithan G1

Affiliation:

1. C V Raman Nagar, India

2. Indian Institute of Sceince, India

Abstract

Among the growing number of data mining techniques in various application areas, outlier detection has gained importance in recent times. Detecting the objects in a data set with unusual properties is important as such outlier objects often contain useful information on abnormal behavior of the system described by the data set. Outlier detection has been popularly used for detection of anomalies in computer networks, fraud detection and such applications. Though a number of research efforts address the problem of detecting outliers in data sets, there are still many challenges faced by the research community in terms of identifying a suitable technique for addressing specific applications of interest. These challenges are primarily due to the large volume of high dimensional data associated with most data mining applications and also due to the performance requirements. This chapter highlights some of the important research issues that determine the nature of the outlier detection algorithm required for a typical data mining application. The research issues discussed include the method of outlier detection, size and dimensionality of the data set, and nature of the target application. Thus this chapter attempts to cover the challenges and possible research directions along with a survey of various data mining techniques dealing with the outlier detection problem.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3