Automated Diagnostics of Coronary Artery Disease

Author:

Kukar Matjaž1,Kononenko Igor1,Grošelj Ciril2

Affiliation:

1. University of Ljubljana, Slovenia

2. University Medical Centre Ljubljana, Slovenia

Abstract

The authors present results and the latest advancement in their long-term study on using image processing and data mining methods in medical image analysis in general, and in clinical diagnostics of coronary artery disease in particular. Since the evaluation of modern medical images is often difficult and time-consuming, authors integrate advanced analytical and decision support tools in diagnostic process. Partial diagnostic results, frequently obtained from tests with substantial imperfections, can be thus integrated in ultimate diagnostic conclusion about the probability of disease for a given patient. Authors study various topics, such as improving the predictive power of clinical tests by utilizing pre-test and post-test probabilities, texture representation, multi-resolution feature extraction, feature construction and data mining algorithms that significantly outperform the medical practice. During their long-term study (1995-2011) authors achieved, among other minor results, two really significant milestones. The first was achieved by using machine learning to significantly increase post-test diagnostic probabilities with respect to expert physicians. The second, even more significant result utilizes various advanced data analysis techniques, such as automatic multi-resolution image parameterization combined with feature extraction and machine learning methods to significantly improve on all aspects of diagnostic performance. With the proposed approach clinical results are significantly as well as fully automatically, improved throughout the study. Overall, the most significant result of the work is an improvement in the diagnostic power of the whole diagnostic process. The approach supports, but does not replace, physicians’ diagnostic process, and can assist in decisions on the cost-effectiveness of diagnostic tests.

Publisher

IGI Global

Reference42 articles.

1. Artificial neural network modeling of stress single-photon emission computed tomographic imaging for detecting extensive coronary artery disease

2. Towards symbolic mining of images with association rules: Preliminary results on textures.;M.Bevk;Intelligent Data Analysis,2006

3. Statistical comparisons of classifiers over multiple data sets.;J.Demšar;Journal of Machine Learning Research,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3