Affiliation:
1. Shahid Chamran University, Iran
2. Wright State University, USA
Abstract
Resilient optical transport networks have received much attention as the backbone for future Internet protocol (IP) networks with enhanced quality of services (QoS) by avoiding loss of data and revenue and providing acceptable services in the presence of failures and attacks. This chapter presents the principles of designing survivable Dense-Wavelength-Division-Multiplexing (DWDM) optical transport networks including failure scenarios, survivability hierarchy, routing and wavelength assignment (RWA), demand matrix models, and implementation approaches. Furthermore, the chapter addresses some current and future research challenges including dealing with multiple simultaneous failures, QoS-based RWA, robustness and future demand uncertainty accommodation, and quality of service issues in the deployment of resilient optical backbones for next generation transport networks.