Electrical Motor Parameters Estimator Improved by a Computational Algorithm

Author:

Aymen Flah.1ORCID,Kraiem Habib1,Lassaâd Sbita.1

Affiliation:

1. National School of Engineering of Gabes, Tunisia

Abstract

In this chapter, two computational algorithms are proposed and applied on an estimation algorithm, in order to improve the global performance of the estimation phase. The proposed system is studied based on the Model Reference Adaptive System (MRAS). The importance of the estimation phase in a large applications number is basically observed on the applications applied on electrical motors, where a lot number of parameters are measured with real measurement equipments, as Tesla Meter, speed shaft, and others. The idea is based generally on the software applications, where it is possible to guarantee the desired estimation phase using a software algorithm. In this chapter the MRAS technique is proposed as the software algorithm, for replacing the measurement materials for online estimate the overall characteristic PMSM parameters. Our approach aims to ameliorate the MRAS technique with intelligent optimization methods called BFO and PSO.

Publisher

IGI Global

Reference53 articles.

1. On Stability of the Chemotactic Dynamics in Bacterial-Foraging Optimization Algorithm

2. New field weakening technique for high saliency interior permanent magnet motor

3. Adaptive tuning of a PI speed controller for a brushless DC motor: optimum speed control using a neural network.;E.Balluq;IEEE International Symposium on Industrial Electronics,2004

4. Ben Hamed M., Sbita L. (2008). Fractional order speed observer for sensorless induction motor drives, International Review of Electrical Engineering IREE, vol. 3,(1).

5. A Comparative Study on Non-Linear State Estimators Applied to Sensorless AC Drives: MRAS and Kalman Filter.;A.Bilal;30th Annual Conference of IEEE Industrial Electronics Society,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3