Using Data Mining Techniques and the Choice of Mode of Text Representation for Improving the Detection and Filtering of Spam

Author:

Hamou Reda Mohamed1,Amine Abdelmalek2

Affiliation:

1. Dr. Moulay Tahar University of Saïda, Algeria

2. Dr. Moulay Taher University of Saïda, Algeria

Abstract

This chapter studies a boosting algorithm based, first, on Bayesian filters that work by establishing a correlation between the presence of certain elements in a message and the fact that they appear in general unsolicited messages (spam) or in legitimate email (ham) to calculate the probability that the message is spam and, second, on an unsupervised learning algorithm: in this case the K-means. A probabilistic technique is used to weight the terms of the matrix term-category, and K-means are used to filter the two classes (spam and ham). To determine the sensitive parameters that improve the classifications, the authors study the content of the messages by using a representation of messages by the n-gram words and characters independent of languages to later decide what representation ought to get a good classification. The work was validated by several validation measures based on recall and precision.

Publisher

IGI Global

Reference24 articles.

1. Identifying video spammers in online social networks

2. An anti-spam filter combination framework for text-and-image emails through incremental learning.;B.Byun;Proceedings of the the Sixth Conference on Email and Anti–Spam (CEAS 2009),2009

3. RANK for spam detection ECML-Discovery Challenge.;J. F.Chevalier;Proceedings of ECML PKDD Discovery Challenge,2008

4. Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active learning with statistical models. arXiv preprint cs/9603104.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3