Conducting Semantic-Based Network Analyses from Social Media Data

Author:

Hai-Jew Shalin1ORCID

Affiliation:

1. Kansas State University, USA

Abstract

Network analysis is widely used to mine social media. This involves both the study of structural metadata (information about information) and the related contents (the textual messaging, the related imagery, videos, URLs, and others). A semantic-based network analysis relies on the analysis of relationships between words and phrases (as meaningful concepts), and this approach may be applied effectively to social media data to extract insights. To gain a sense of how this might work, a trending topic of the day was chosen (namely, the free-information and data leakage movement) to see what might be illuminated using this semantic-based network analysis, an open-source technology, NodeXL, and access to multiple social media platforms. Three types of networks are extracted: (1) conversations (#hashtag microblogging networks on Twitter; #eventgraphs on Twitter; and keyword searches on Twitter; (2) contents (video networks on YouTube, related tags networks on Flickr, and article networks on Wikipedia; and (3) user accounts on Twitter, YouTube, Flickr, and Wikipedia.

Publisher

IGI Global

Reference32 articles.

1. A content-driven reputation system for the wikipedia

2. The big data divide.;M.Andrejevic;International Journal of Communication,2014

3. Ares, K. (2014, Nov. 29). Social media data does not reveal true human behaviour. Tech Analyst. Retrieved from http://www.techanalyst.co/social-media-data-does-not-reveal-true-human-behaviour/14462/

4. Blumenstock, J. E. (2008). Size matters: Word count as a measure of quality on Wikipedia (Poster Paper). In the proceedings of WWW 2008. Beijing, China.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3