Preprocessing MRS Information for Classification of Human Brain Tumours

Author:

Arizmendi C. J.1,Vellido A.2,Romero E.2

Affiliation:

1. Universitat Politècnica de Catalunya (UPC), Spain & Universidad Autonoma de Bucaramanga (UNAB), Colombia

2. Universitat Politècnica de Catalunya (UPC), Spain

Abstract

Brain tumours show a low prevalence as compared to other cancer pathologies. Their impact, both in individual and social terms, far outweighs such low prevalence. Their anatomical specificity also makes them difficult to explore and treat. The use of biopsies is limited to extreme cases due to the risks involved in the surgical procedure, and non-invasive measurements are the standard for diagnostic exploration. The usual measurement techniques come in the modalities of imaging and spectroscopy. In this chapter, the authors analyze magnetic resonance spectroscopy (MRS) data from an international database and illustrate the importance of data preprocessing prior to diagnostic classification.

Publisher

IGI Global

Reference24 articles.

1. Agoris, P. D., Meijer, S., Gulski, E., & Smit, J. J. (2004) Threshold selection for wavelet denoising of partial discharge data. In Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, (pp. 62-65). IEEE.

2. Epidemiology of Health Effects of Radiofrequency Exposure

3. Arizmendi, C., Hernández-Tamames, J., Romero, E., Vellido, A., & del Pozo, F. (2010). Diagnosis of brain tumours from magnetic resonance spectroscopy using wavelets and Neural Networks. In Proceedings of the Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE, (pp. 6074-6077).

4. Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares

5. Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian regularization. In Proceedings of the International Joint Conference on Neural Networks, IJCNN 1997, (pp. 1930-1935). Houston, Texas, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3