Incremental Algorithm for Discovering Frequent Subsequences in Multiple Data Streams

Author:

Al-Mulla Reem1,Al Aghbari Zaher1

Affiliation:

1. University of Sharjah, UAE

Abstract

In recent years, new applications emerged that produce data streams, such as stock data and sensor networks. Therefore, finding frequent subsequences, or clusters of subsequences, in data streams is an essential task in data mining. Data streams are continuous in nature, unbounded in size and have a high arrival rate. Due to these characteristics, traditional clustering algorithms fail to effectively find clusters in data streams. Thus, an efficient incremental algorithm is proposed to find frequent subsequences in multiple data streams. The described approach for finding frequent subsequences is by clustering subsequences of a data stream. The proposed algorithm uses a window model to buffer the continuous data streams. Further, it does not recompute the clustering results for the whole data stream at every window, but rather it builds on clustering results of previous windows. The proposed approach also employs a decay value for each discovered cluster to determine when to remove old clusters and retain recent ones. In addition, the proposed algorithm is efficient as it scans the data streams once and it is considered an Any-time algorithm since the frequent subsequences are ready at the end of every window.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3