A Comparative Study of Clustering Algorithms

Author:

Al Falahi Kanna1,Harous Saad1,Atif Yacine1

Affiliation:

1. United Arab Emirates University-Al Ain, UAE

Abstract

Clustering is a major problem when dealing with organizing and dividing data. There are multiple algorithms proposed to handle this issue in many scientific areas such as classifications, community detection and collaborative filtering. The need for clustering arises in Social Networks where huge data generated daily and different relations are established between users. The ability to find groups of interest in a network can help in many aspects to provide different services such as targeted advertisements. The authors surveyed different clustering algorithms from three different clustering groups: Hierarchical, Partitional, and Density-based algorithms. They then discuss and compare these algorithms from social web point view and show their strength and weaknesses in handling social web data. They also use a case study to support our finding by applying two clustering algorithms on articles collected from Delicious.com and discussing the different groups generated by each algorithm.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3