Affiliation:
1. Gurukula Kangri Vishwavidyalaya, India
Abstract
Differential Evolution (DE) algorithm is known as robust, effective and highly efficient for solving the global optimization problems. In this chapter, a modified variant of Differential Evolution (DE) is proposed, named Cultivated Differential Evolution (CuDE) which is different from basic DE in two ways: 1) the selection of the base vector for mutation operation, 2) population generation for the next generation. The performance of the proposed algorithm is validated on a set of eight benchmark problems taken from literature and a real time molecular potential energy problem. The numerical results show that the proposed approach helps in formulating a better trade-off between convergence rate and efficiency. Also, it can be seen that the performance of DE is improved in terms of number of function evaluations, acceleration rate and mean error.