Survey of Medical Image Compression Techniques and Comparative Analysis

Author:

Geetha P.1

Affiliation:

1. Anna University Chennai, India

Abstract

Today digital imaging is widely used in every application around us like Internet, High Definition TeleVision (HDTV), satellite communications, fax transmission, and digital storage of movies and more, because it provide superior resolution and quality. Recently, medical imaging has begun to take advantage of digital technology, opening the way for advanced medical imaging and teleradiology. However, medical imaging requires storing, communicating and manipulating large amounts of digital data. Applying image compression reduces the storage requirements, network traffic, and therefore improves efficiency. This chapter provides the need for medical image compression; different approaches to image compression, emerging wavelet based lossy-lossless compression techniques, how the existing recent compression techniques work and also comparison of results. After completing this chapter, the reader should have an idea of how to increase the compression ratio and at the same time maintain the PSNR level compared to the existing techniques, desirable features of standard compression techniques such as embededness and progressive transmission, how these are very useful and much needed in the interactive teleradiology, telemedicine and telebrowsing applications.

Publisher

IGI Global

Reference54 articles.

1. Discrete Cosine Transform

2. Barnsley, M. F. & Sloan, A. D. (1988). A better way to compress images. Byte, 215-223.

3. Boliek, M., Gormish, M. J., Schwartz, E. L., & Keith, A. (1997). Next generation image compression and manipulation using CREW. Proceeding of IEEE ICIP, 3, 567-572.

4. Buccigrossi, R., & Simoncelli, E. P. (1997). EPWIC: Embedded predictive wavelet image coder. In Proceedings of 4th IEEE International Conference on Image Processing, (pp. 640-648). Santa Barbara, CA: IEEE Press.

5. Calderbank, R., Daubechies, I., Sweldens, W., & Yeo, B.-L. (1998). Wavelet transforms that map integers to integers. Journal of Applied and Computational Harmonic Analysis, (5), 332-369.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3