Evolutionary Control of Helicopter Hovering Based on Genetic Programming

Author:

Dracopoulos Dimitris C.1,Effraimidis Dimitrios1

Affiliation:

1. University of Westminster, UK

Abstract

Computational intelligence techniques such as neural networks, fuzzy logic, and hybrid neuroevolutionary and neuro-fuzzy methods have been successfully applied to complex control problems in the last two decades. Genetic programming, a field under the umbrella of evolutionary computation, has not been applied to a sufficiently large number of challenging and difficult control problems, in order to check its viability as a general methodology to such problems. Helicopter hovering control is considered a challenging control problem in the literature and has been included in the set of benchmarks of recent reinforcement learning competitions for deriving new intelligent controllers. This chapter shows how genetic programming can be applied for the derivation of controllers in this nonlinear, high dimensional, complex control system. The evolved controllers are compared with a neuroevolutionary approach that won the first position in the 2008 helicopter hovering reinforcement learning competition. The two approaches perform similarly (and in some cases GP performs better than the winner of the competition), even in the case where unknown wind is added to the dynamic system and control is based on structures evolved previously, that is, the evolved controllers have good generalization capability.

Publisher

IGI Global

Reference19 articles.

1. An application of mreinforcement learning to aerobatic helicopter flight.;P.Abbeel;Advances in Neural Information Processing Systems,2006

2. Learning vehicular dynamics, with application to modeling helicopters.;P.Abbeel;Advances in Neural Information Processing Systems,2006

3. Buskey, G., Wyeth, G., & Roberts, J. (2001). Autonomous helicopter hover using an artificial neural network. In Proceedings IEEE International Conference on Robotics and Automation, (pp. 1635–1640). IEEE.

4. Evolutionary Learning Algorithms for Neural Adaptive Control

5. Bioreactor Control by Genetic Programming

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3