A Promising Direction towards Automatic Construction of Relevance Measures

Author:

Varn Lucianne1,Neshatian Kourosh2

Affiliation:

1. Independent Researcher, New Zealand

2. University of Canterbury, New Zealand

Abstract

A relevance measure is a measure over the space of features of a learning problem that quantifies the degree of relatedness of a single feature or a subset of features to a target variable. The measure can be used to both detect relevant features (when the target variable is the response variable) and detect redundant features (when the target variable is another input feature). Measuring relevance and redundancy is a central concept in feature selection. In this chapter, the authors show that there is a lack of generality in the features selected based on heuristic relevance measures. Through some counter-examples, the authors show that regardless of the type of heuristic measure and search strategy, heuristic methods cannot optimise the performance of all learning algorithms. They show how different measures may have different notions of relevance between features and how this could lead to not detecting important features in certain situations. The authors then propose a hyper-heuristic method that through an evolutionary process automatically generates an appropriate relevance measure for a given problem. The new approach can detect relevant features in difficult scenarios.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3