Revealing Groups of Semantically Close Textual Documents by Clustering

Author:

Dařena František1,Žižka Jan1

Affiliation:

1. Mendel University in Brno, Czech Republic

Abstract

The chapter introduces clustering as a family of algorithms that can be successfully used to organize text documents into groups without prior knowledge of these groups. The chapter also demonstrates using unsupervised clustering to group large amount of unlabeled textual data (customer reviews written informally in five natural languages) so it can be used later for further analysis. The attention is paid to the process of selecting clustering algorithms, their parameters, methods of data preprocessing, and to the methods of evaluating the results by a human expert with an assistance of computers, too. The feasibility has been demonstrated by a number of experiments with external evaluation using known labels and expert validation with an assistance of a computer. It has been found that it is possible to apply the same procedures, including clustering, cluster validation, and detection of topics and significant words for different natural languages with satisfactory results.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text Mining;Advances in Data Mining and Database Management;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3