Scientific Data Management and Visualization

Author:

Goranova Mariana1

Affiliation:

1. Technical University of Sofia, Bulgaria

Abstract

One of the challenges of modern science is data exploration (eScience) that synthesizes theory, experimentation, and computation with advanced data management and statistics. The scientific community produces and consumes massive volumes of unstructured and heterogeneous data from various data sources. State-of-the-art research in “intelligent labs” explores scientific data management and visualization in distributed and heterogeneous environments. The goal of this chapter is to propose and describe a scientific data management and visualization system for scientists to perform specialized data browsing, processing, and visualization using a service-driven integration approach. In order to make scientific data more usable from the Internet, a SOA-based system that uses Web services to manage data is proposed. This chapter discusses the methodology to describe and access scientific data from various sources with different formats, and transform raw data into standard datasets that can be analyzed, processed, and visualized in an effective manner.

Publisher

IGI Global

Reference31 articles.

1. Trident: Scientific Workflow Workbench for Oceanography

2. Bentley, R., Bogart, R., Davis, A., Hurburt, N., Mukherjee, J., & Rezapkin, V. …Weiss, M. (2004). VOs. Retrieved from http://lwsde.gsfc.nasa.gov/VO_Framework_7_Jan_05.pdf

3. BFD. (2003). Binary Format Description Language. Retrieved from http://collaboratory.emsl.pnl.gov/sam/bfd

4. Buyya, R., Yeoa, C., Venugopala, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. The International Journal of Grid Computing and eScience, 25(6), 599-616.

5. CDF. (2013). Common Data Format. Retrieved from http://cdf.gsfc.nasa.gov/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3