Organ Augmented Reality

Author:

Jacquemin Christian1,Ajaj Rami2,Le Beux Sylvain2,d’Alessandro Christophe2,Noisternig Markus3,Katz Brian F.G.2,Planes Bertrand4

Affiliation:

1. LIMSI-CNRS, University of Paris Sud 11, France

2. LIMSI-CNRS, France

3. IRCAM, France

4. Artist, France

Abstract

This paper discusses the Organ Augmented Reality (ORA) project, which considers an audio and visual augmentation of an historical church organ to enhance the understanding and perception of the instrument through intuitive and familiar mappings and outputs. ORA has been presented to public audiences at two immersive concerts. The visual part of the installation was based on a spectral analysis of the music. The visuals were projections of LED-bar VU-meters on the organ pipes. The audio part was an immersive periphonic sound field, created from the live capture of the organ sounds, so that the listeners had the impression of being inside the augmented instrument. The graphical architecture of the installation is based on acoustic analysis, mapping from sound levels to synchronous graphics through visual calibration, real-time multi-layer graphical composition and animation. The ORA project is a new approach to musical instrument augmentation that combines enhanced instrument legibility and enhanced artistic content.

Publisher

IGI Global

Reference24 articles.

1. Bouillot, N., Wozniewski, M., Settel, Z., & Cooperstock, J. R. (2007). A mobile wireless augmented guitar. In Proceedings of the 7th International Conference on New Interfaces for Musical Expression NIME ‘07, Genova, Italy.

2. Cakmakci, O., Bérard, F., & Coutaz, J. (2003). An augmented reality based learning assistant for electric bass guitar. In Proceedings of the 10th International Conference on Human-Computer Interaction (HCI International 2003), Crete, Greece.

3. d’Alessando, C., Noisternig, M., Le Beux, S., Katz, B., Picinali, L., Jacquemin, C., et al. (2009). The ORA project: Audio-visual live electronics and the pipe organ. In Proceedings of International Computer Music Conference ICMC 2009, Montreal, Canada.

4. MusiKalscope: a graphical musical instrument

5. Periphony: With-height sound reproduction.;M. A.Gerzon;Journal of the Audio Engineering Society. Audio Engineering Society,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3