Affiliation:
1. University of Naples Federico II, Italy
2. University of Cagliari, Italy
Abstract
Face recognition in real world applications is a very difficult task because of image misalignments, pose and illumination variations, or occlusions. Many researchers in this field have investigated both face representation and classification techniques able to deal with these drawbacks. However, none of them is free from limitations. Early proposed algorithms were generally holistic, in the sense they consider the face object as a whole. Recently, challenging benchmarks demonstrated that they are not adequate to be applied in unconstrained environments, despite of their good performances in more controlled conditions. Therefore, the researchers' attention is now turning on local features that have been demonstrated to be more robust to a large set of non-monotonic distortions. Nevertheless, though local operators partially overcome some drawbacks, they are still opening new questions (e.g., Which criteria should be used to select the most representative features?). This is the reason why, among all the others, hybrid approaches are showing a high potential in terms of recognition accuracy when applied in uncontrolled settings, as they integrate complementary information from both local and global features. This chapter explores local, global, and hybrid approaches.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献