Applications of Machine Learning for Linguistic Analysis of Texts

Author:

Torney Rosemary1,Yearwood John2,Vamplew Peter1,Kelarev Andrei V.1

Affiliation:

1. University of Ballarat, Australia

2. Federation University, Australia

Abstract

This chapter describes a novel multistage method for linguistic clustering of large collections of texts available on the Internet as a precursor to linguistic analysis of these texts. This method addresses the practicalities of applying clustering operations to a very large set of text documents by using a combination of unsupervised clustering and supervised classification. The method relies on creating a multitude of independent clusterings of a randomized sample selected from the International Corpus of Learner English. Several consensus functions and sophisticated algorithms are applied in two substages to combine these independent clusterings into one final consensus clustering, which is then used to train fast classifiers in order to enable them to perform the profiling of very large collections of text and web data. This approach makes it possible to apply advanced highly accurate and sophisticated clustering techniques by combining them with fast supervised classification algorithms. For the effectiveness of this multistage method it is crucial to determine how well the supervised classification algorithms are going to perform at the final stage, when they are used to process large data sets available on the Internet. This performance may also serve as an indication of the quality of the combined consensus clustering obtained in the preceding stages. The authors’ experimental results compare the performance of several classification algorithms incorporated in this multistage scheme and demonstrate that several of these classification algorithms achieve very high precision and recall and can be used in practical implementations of their method.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3