Learning with Querying and its Application in Network Security

Author:

Lai Liang-Bin1,Lin Shu-Yu1,Chang Ray-I1,Kouh Jen-Shiang1

Affiliation:

1. National Taiwan University, Taiwan, ROC

Abstract

Understanding the ability of learning in both humans and non-humans is an important research crossing the boundaries between several scientific disciplines from computer science to brain science and psychology. In this chapter, the authors first introduce a query based learning concept (learning with query) in which all the minds’ beliefs and actions will be revised by observing the outcomes of past mutual interactions (selective-attention and self-regulation) over time. That is, moving into an active learning and aggressive querying method will be able to focus on effectiveness to achieve learning goals and desired outcomes. Secondly, they show that the proposed method has better effectiveness for several learning algorithms, such as decision tree, particle swarm optimization, and self-organizing maps. Finally, a query based learning method is proposed to solve network security problems as a sample filter at intrusion detection. Experimental results show that the proposed method can not only increase the accuracy detection rate for suspicious activity and recognize rare attack types but also significantly improve the efficiency of intrusion detection. Therefore, it is good to design and to implement an effective learning algorithm for information security.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3