Modular Cable-Driven Robotic Arms for Intrinsically Safe Manipulation

Author:

Lim Wen Bin1,Yang Guilin2,Yeo Song Huat1,Mustafa Shabbir Kurbanhusen2

Affiliation:

1. Nanyang Technological University, Singapore

2. Singapore Institute of Manufacturing Technology, Singapore

Abstract

A Cable-Driven Robotic Arm (CDRA) possesses a number of advantages over the conventional articulated robotic arms, such as lightweight mechanical structure, high payload, fault tolerance, and most importantly, safe manipulation in the human environment. As such, a mobile manipulator that consists of a mobile base and a CDRA can be a promising assistive robot for the aging or disabled people to perform necessary tasks in their daily life. For such applications, a CDRA is a dexterous manipulator that consists of a number of cable-driven joint modules. In this chapter, a modular design concept is employed in order to simplify design, analysis, and control of CDRA to a manageable level. In particular, a 2-DOF cable-driven joint module is proposed as the basic building block of a CDRA. The critical design analysis issues pertaining to the kinematics analysis, tension analysis, and workspace-based design optimization of the 2-DOF cable-driven joint module are discussed. As a modular CDRA can be constructed into various configurations, a configuration-independent kinematic modeling approach based on the Product-of-Exponentials (POE) formula is proposed. The effectiveness of the proposed design analysis algorithms are demonstrated through simulation examples.

Publisher

IGI Global

Reference14 articles.

1. Engineering Applications of Noncommutative Harmonic Analysis

2. Dessen, F. (1986). Coordinating control of a two degrees of freedom universal joint structure driven by three servos. In Proceedings of IEEE International Conference on Robotics and Automation, (pp. 817–822). IEEE Press.

3. The evolution of robotics research.;E.Garcia;IEEE Robotics & Automation Magazine,2007

4. Hamid, S., & Simaan, N. (2009). Design and synthesis of wire-actuated universal-joint wrists for surgical applications. In Proceedings of IEEE International Conference on Robotics and Automation, (pp. 1807 – 1813). New York, NY: IEEE Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3