On Some Dynamical Properties of Randomly Connected Higher Order Neural Networks

Author:

Miyajima Hiromi1,Shigei Noritaka1,Yatsuki Shuji2

Affiliation:

1. Kagoshima University, Japan

2. Kyoto Software Research, Inc., Japan

Abstract

This chapter presents macroscopic properties of higher order neural networks. Randomly connected Neural Networks (RNNs) are known as a convenient model to investigate the macroscopic properties of neural networks. They are investigated by using the statistical method of neuro-dynamics. By applying the approach to higher order neural networks, macroscopic properties of them are made clear. The approach establishes: (a) there are differences between stability of RNNs and Randomly connected Higher Order Neural Networks (RHONNs) in the cases of the digital state -model and the analog state model; (b) there is no difference between stability of RNNs and RHONNs in the cases of the digital state -model and the analog state -model; (c) with neural networks with oscillation, there are large differences between RNNs and RHONNs in the cases of the digital state -model and the analog state -model, that is, there exists complex dynamics in each model for ; (d) behavior of groups composed of RHONNs are represented as a combination of the behavior of each RHONN.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3