Affiliation:
1. ETS, Quebec University, Canada
2. Cairo University, Egypt
Abstract
This chapter reviews a recent HONN-like model called Symbolic Function Network (SFN). This model is designed with the goal to impart more flexibility than both traditional and HONNs neural networks. The main idea behind this scheme is the fact that different functional forms suit different applications and that no specific architecture is best for all. Accordingly, the model is designed as an evolving network that can discover the best functional basis, adapt its parameters, and select its structure simultaneously. Despite the high modeling capability of SFN, it is considered as a starting point for developing more powerful models. This chapter aims to open a door for researchers to propose new formulations and techniques that impart more flexibility and result in sparser and more accurate models. Through this chapter, the theoretical basis of SFN is discussed. The model optimization computations are deeply illustrated to enable researchers to easily implement and test the model.