Waveband Switching

Author:

Wang Yang1,Anand Vishal2,Cao Xiaojun1

Affiliation:

1. Georgia State University, USA

2. The College at Brockport, USA

Abstract

In this chapter, the authors describe and review some of the recent research on WBS, including Multi-Granular optical cross-connect (MG-OXC) architectures that can switch traffic at different granularities. The authors focus on the dynamic online WBS problem, and describe and analyze two reconfigurable MG-OXC architectures in terms of their port count and blocking probabilities. Based on the analyses, the authors then propose a novel dynamic graph-based waveband assignment algorithm in conjunction with adaptive routing. The proposed algorithm employs ant optimization techniques to reduce ports and blocking probability in the network with online traffic in a distributed manner. The authors use simulation experiments to evaluate the effectiveness of the authors’ approach under various parameters such as varying number of ants, varying the number of routes and the wavelength assignment algorithm. The authors’ simulation results show that their graph-based waveband assignment algorithm combined with adaptive routing can achieve a superior performance when compared to other schemes. Furthermore, the authors’ studies shows that even with limited resources, WBS can achieve a low blocking probability and port savings.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3