Semantic Document Networks to Support Concept Retrieval

Author:

Boese Simon1,Reiners Torsten2,Wood Lincoln C.3ORCID

Affiliation:

1. University of Hamburg, Germany

2. Curtin University, Australia & University of Hamburg, Germany

3. University of Otago, New Zealand

Abstract

There are many unstructured documents created in many disciplines which need to be (pre-) processed in one way or another for further integration and use in IT systems. The predominance of the Internet and large corporate databases implies that there are large volumes of documents that need to be analysed and searched to retrieve information; particularly within the fields of machine translation, text analysis, semantic mining, information extraction and retrieval. We explicate a framework based on concept-based indexing that supports the analysis, storage, and retrieval of documents. Natural-language reduction is used to calculate semantic cores for concept-based indexing of stored concepts found within documents. The processed documents are stored within a semantic network enabling effective analysis of core concepts within documents and rapid retrieval of specific ideas from multiple documents based on provided concepts

Publisher

IGI Global

Reference28 articles.

1. Aust, T., & Sarnow, M. (2009). Entwurf und implementierung einer medien-datenbank-middleware mit integrierten semantischen netzen [English: Design and implementation of a media database middleware using semantic networks] (Diploma Thesis). University of Hamburg, Germany.

2. An Adapted Lesk Algorithm for Word Sense Disambiguation Using WordNet

3. Baziz, M., Boughanem, M., & Traboulsi, S. (2005). A concept-based approach for indexing documents in IR. Actes du XXIIIème Congrès INFORSID (pp. 489-504).

4. Boese, S., Reiners, T., & Wood, L. C. (2012). Design and construction of semantic document networks using concept extraction, School of Information Systems Working Paper Series, Curtin University of Technology, Australia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3