Affiliation:
1. College of Business, University of Texas at San Antonio, USA
Abstract
Optimization problems with multiple criteria measuring solution quality can be modeled as multiobjective programming problems. Because the objective functions are usually in conflict, there is not a single feasible solution that can optimize all objective functions simultaneously. An optimal solution is one that is most preferred by the decision maker (DM) among all feasible solutions. An optimal solution must be nondominated but a multiobjective programming problem may have, possibly infinitely, many nondominated solutions. Therefore, tradeoffs must be made in searching for an optimal solution. Hence, the DM's preference information is elicited and used when a multiobjective programming problem is solved. The model, concepts and definitions of multiobjective programming are presented and solution methods are briefly discussed. Examples are used to demonstrate the concepts and solution methods. Graphics are used in these examples to facilitate understanding.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献