Affiliation:
1. Clark Atlanta University, USA
2. Yale University, USA
Abstract
Iron oxide nanoparticles show great promise in bio-applications like drug delivery, magnetic resonance imaging, and hyperthermia. This is because the size of these magnetic nanoparticles is comparable to biomolecules and the particles can be removed via normal iron metabolic pathways. These nanoparticles are also attractive for industrial separations and catalysis because they can be magnetically recovered. However, the size, morphology, and surface coating of the iron oxide nanoparticles greatly affect their magnetic properties and biocompatibility. Therefore, nanoparticles with tunable characteristics are desirable. This chapter elaborates the synthesis techniques for the formation of iron oxide nanoparticles with good control over reproducibility, surface and magnetic properties, and morphology. The well-known co-precipitation and thermal decomposition methods are detailed in this chapter. The surface modification routes and characterization of these nanoparticles are also discussed. The chapter will be particularly useful for engineering/science graduate students and/or faculty interested in synthesizing iron oxide nanoparticles for specific research applications.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献