A Novel Fuzzy Anomaly Detection Algorithm Based on Hybrid PSO-Kmeans in Content-Centric Networking

Author:

Karami Amin1

Affiliation:

1. Universitat Politecnica de Catalunya, Spain

Abstract

In Content-Centric Networks (CCNs) as a promising network architecture, new kinds of anomalies will arise. Usually, clustering algorithms would fit the requirements for building a good anomaly detection system. K-means is a popular anomaly detection method; however, it suffers from the local convergence and sensitivity to selection of the cluster centroids. This chapter presents a novel fuzzy anomaly detection method that works in two phases. In the first phase, authors propose an hybridization of Particle Swarm Optimization (PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters and local optimization to determine the optimal number of clusters. When the optimal placement of clusters centroids and objects are defined, it starts the second phase. In this phase, the authors employ a fuzzy approach by the combination of two distance-based methods as classification and outlier to detect anomalies in new monitoring data. Experimental results demonstrate that the proposed method can yield high accuracy as compared to preexisting algorithms.

Publisher

IGI Global

Reference63 articles.

1. Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., & Ohlman, B. (2011). A survey of information-centric networking (draft). Proceedings of Information-Centric Networking. Schloss Dagstuhl - Leibniz-Zentrum fuerInformatik, Germany.

2. Asuncion, A., & Newman, D. (2007). UCI machine learning repository. Retrieved from http://www.ics.uci.edu

3. The use of the area under the ROC curve in the evaluation of machine learning algorithms

4. An off-the-shelf PSO.;A.Carlisle;Proceedings of the Particle Swarm Optimization Workshop,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3