Biologically-Inspired Wireless Power Transmission System

Author:

Cheah Agnes Ruey Chyi1,Yeap Kim Ho1,Yeong Kee Choon1,Hirasawa Kazuhiro2

Affiliation:

1. UTAR, Malaysia

2. University of Tsukuba, Japan

Abstract

This chapter gives an overview on Wireless Power Transfer (WPT) systems and the existing biologically-inspired architectures which could be used to optimize the efficiency of the systems. In general, wireless power transmission could be categorized into near-field and far-field mechanisms. At present, one of the most immediate issues to be solved is the relatively low efficiency in a WPT system. The system's efficiency decreases gradually as the distance increases. To ensure highest efficiency, the path with the shortest distance and the lowest interference is to be selected. In this case, a few of the most popular biologically-inspired algorithms, i.e. Firefly Algorithm(FA), Simulated Annealing (SA), the Ant Colony Optimization (ACO) and Genetic Algorithms (GAs) could be employed for efficiently solving different optimization problems. In short, these algorithms mentioned involve the emulation of fireflies flash signals for mating, exploitation of the metallurgy process, nature of ants leaving pheromones along the trails traveled and also the mimic of gradual evolution of organisms.

Publisher

IGI Global

Reference32 articles.

1. Wireless energy transfer using resonant inductive coupling.;R.Balasubramaniam;Proceedings of Sixth IRAJ International Conference,2013

2. Simulated Annealing

3. Modified firefly algorithm using fuzzy tuned parameters. In Fuzzy Systems (IFSC;M.Bidar;13th Iranian Conference,2013

4. Optimum behavior: Wireless power transmission system design through behavioral models and efficient synthesis techniques

5. A comparison of analytical models for resonant inductive coupling wireless power transfer.;E.Bou;Progress In Electromagnetics Research Symposium Proceedings,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3