Using Executable Slicing to Improve Rogue Software Detection Algorithms

Author:

Durand Jan1,Flores Juan1,Atkison Travis1,Kraft Nicholas2,Smith Randy2

Affiliation:

1. Louisiana Tech University, USA

2. University of Alabama, USA

Abstract

This paper describes a research effort to use executable slicing as a pre-processing aid to improve the prediction performance of rogue software detection. The prediction technique used here is an information retrieval classifier known as cosine similarity that can be used to detect previously unknown, known or variances of known rogue software by applying the feature extraction technique of randomized projection. This paper provides direction in answering the question of is it possible to only use portions or subsets, known as slices, of an application to make a prediction on whether or not the software contents are rogue. This research extracts sections or slices from potentially rogue applications and uses these slices instead of the entire application to make a prediction. Results show promise when applying randomized projections to cosine similarity for the predictions, with as much as a 4% increase in prediction performance and a five-fold decrease in processing time when compared to using the entire application.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3