Client-Side Relevance Feedback Approach for Image Retrieval in Mobile Environment

Author:

Yu Ning1,Hua Kien A.1,Liu Danzhou2

Affiliation:

1. University of Central Florida, USA

2. Symantec Corporation, USA

Abstract

During the last decade, high quality (i.e. over 1 megapixel) built-in cameras have become standard features of handheld devices. Users can take high-resolution pictures and share with friends via the internet. At the same time, the demand of multimedia information retrieval using those pictures on mobile devices has become an urgent problem to solve, and therefore attracts attention. A relevance feedback information retrieval process includes several rounds of query refinement, which incurs exchange of images between the mobile device and the server. With limited wireless bandwidth, this process can incur substantial delay, making the system unfriendly to use. This issue is addressed by considering a Client-side Relevance Feedback (CRF) technique. In the CRF system, Relevance Feedback (RF) is done on client side along. Mobile devices’ battery power is saved from exchanging images between server and client and system response is instantaneous, which significantly enhances system usability. Furthermore, because the server is not involved in RF processing, it is able to support more users simultaneously. The experiment indicates that the system outperforms the traditional server-client relevance feedback systems on the aspects of system response time, mobile battery power saving, and retrieval result.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3