Further Development of an Application Framework for Computational Chemistry (AFCC) Applied to New Drug Discovery

Author:

Tindle J.1,Gray M.2,Warrender R.L.1,Ginty K.1,Dawson P.K.D.2

Affiliation:

1. University of Sunderland – St. Peter's Campus, UK

2. University of Sunderland – City Campus, UK

Abstract

This chapter describes the performance of a compute cluster applied to solve Three Dimensional (3D) molecular modelling problems. The primary goal of this work is to identify new potential drugs. The chapter focuses upon the following issues: computational chemistry, computational efficiency, task scheduling, and the analysis of system performance. The philosophy of design for an Application Framework for Computational Chemistry (AFCC) is described. Eighteen months after the release of the original chapter, the authors have examined a series of changes adopted which have led to improved system performance. Various experiments have been carried out to optimise the performance of a cluster computer, the results analysed, and the statistics produced are discussed in the chapter.

Publisher

IGI Global

Reference17 articles.

1. Brain, Z., & Addicoat, M. (2010). Using meta-genetic algorithms to tune parameters of genetic algorithms to find lowest energy molecular conformers. In Proceedings of the Alife XII Conference (pp. 378-385). Odense, Denmark: The MIT Press.

2. Buyya1, R., & Murshed, M. (2002) GridSim: A toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing. Concurrency and Computation: Practice and Experience, 14(13-15), 1175–1220.

3. Buyya1, R., Branson, K., Giddy, J., & Abramson, D. (2003). The virtual laboratory: A toolset to enable distributed molecular modelling for drug design on the World-Wide Grid. Concurrency and Computation: Practice and Experience, 15(1)1–25.

4. Eco_Friendly Super Computing, Dell Case Study. (n.d.). Retrieved April, 4, 2014 from http://www.cit.sunderland.ac.uk/downloads/files/Sunderland_University.pdf

5. Gaussian 09 Reference Manual (n.d.). Retrieved April 2014 from http://www.gaussian.com/g_tech/g09w_ref.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3