1. Brain, Z., & Addicoat, M. (2010). Using meta-genetic algorithms to tune parameters of genetic algorithms to find lowest energy molecular conformers. In Proceedings of the Alife XII Conference (pp. 378-385). Odense, Denmark: The MIT Press.
2. Buyya1, R., & Murshed, M. (2002) GridSim: A toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing. Concurrency and Computation: Practice and Experience, 14(13-15), 1175–1220.
3. Buyya1, R., Branson, K., Giddy, J., & Abramson, D. (2003). The virtual laboratory: A toolset to enable distributed molecular modelling for drug design on the World-Wide Grid. Concurrency and Computation: Practice and Experience, 15(1)1–25.
4. Eco_Friendly Super Computing, Dell Case Study. (n.d.). Retrieved April, 4, 2014 from http://www.cit.sunderland.ac.uk/downloads/files/Sunderland_University.pdf
5. Gaussian 09 Reference Manual (n.d.). Retrieved April 2014 from http://www.gaussian.com/g_tech/g09w_ref.htm