Database Systems in Biology

Author:

Pappalardo Elisa1,Cantone Domenico1

Affiliation:

1. University of Catania, Italy

Abstract

The successful sequencing of the genoma of various species leads to a great amount of data that need to be managed and analyzed. With the increasing popularity of high-throughput sequencing technologies, such data require the design of flexible scalable, efficient algorithms and enterprise data structures to be manipulated by both biologists and computational scientists; this emerging scenario requires flexible, scalable, efficient algorithms and enterprise data structures. This chapter focuses on the design of large scale database-driven applications for genomic and proteomic data; it is largely believed that biological databases are similar to any standard database-drive application; however, a number of different and increasingly complex challenges arises. In particular, while standard databases are used just to manage information, in biology, they represent a main source for further computational analysis, which frequently focuses on the identification of relations and properties of a network of entities. The analysis starts from the first text-based storage approach and ends with new insights on object relational mapping for biological data.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3