Fault-Tolerant and Fail-Safe Design based on Reconfiguration

Author:

Kubatova Hana1,Kubalik Pavel1

Affiliation:

1. Czech Technical University in Prague, Czech Republic

Abstract

The main aim of this chapter is to present the way, how to design fault-tolerant or fail-safe systems in programmable hardware (FPGAs) and therefore to use FPGAs in mission-critical applications, too. RAM based FPGAs are usually taken for unreliable due to high probability of transient faults (SEU) and therefore inapplicable in this area. But FPGAs can be easily reconfigured. The authors’ aim is to utilize appropriate type of FPGA reconfiguration and to combine it with well-known methods for fail-safe and fault-tolerant design (duplex, TMR) including on-line testing methods for fault detection and then startup of the reconfiguration process. Dependability parameters’ calculations based on reliability models is integral part of proposed methodology. The trade-off between the requested level of dependability characteristics of a designed system and area overhead with respect to FPGA possible faults the main property and advantage of proposed methodology.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3