Spark Plasma Sintering of MAX Phases and Their Related Composites

Author:

Jiang Wan1,Zhang Jianfeng2,Wang Lianjun1

Affiliation:

1. Donghua University, China

2. Tohoku University, Japan

Abstract

With the combined merits of both metals and ceramics, including good electrical and thermal conductivity, ready machinability, exceptional damage tolerance, light weight, high rigidity, etc., the ternary layered MAX compounds have attracted much attention in the world. For the synthesis and consolidation of MAX phases, the relatively novel spark plasma sintering (or SPS in short) represents a very competitive technique for its high efficiency and energy saving. Since 2000’s, SPS has been extensively used for this propose, especially in Ti3SiC2 and Ti3SiC2-based composites. The present general results indicate that Ti/Si/TiC is the most appropriate powder mixture and Al is a good aid for the synthesis of high purity Ti3SiC2 by SPS. Various Ti3SiC2-based composites have also been consolidated by SPS and the related properties were improved, such as hardness, strength, fracture toughness and conductivity. It is very important to notice that, Ti3SiC2 phase can also be in situ synthesized in its composites as the commercial Ti3SiC2 powder is hardly available. A few other MAX phases have also been synthesized and consolidated by SPS in one step using various powder mixtures. However, much work should be done to clarify the synthesis mechanism and various processing windows for MAX phases by SPS technique. Lowering the fabrication cost and finding appropriate applications of MAX phases are also eagerly expected.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3