Carbon Vacancy Ordered Non-Stoichiometric ZrC0.6

Author:

Hu Wentao1,Tian Yongjun1,Liu Zhongyuan1

Affiliation:

1. Yanshan University, China

Abstract

The starting nanopowders of non-stoichiometric zirconium carbide (ZrCx) were fabricated via milling Zr powders in toluene for different dwell times. The carbon content was determined to depend on the milling time and the used amount of toluene. The bulk non-stoichiometric ZrCx with different x were prepared by spark plasma sintering of the obtained ZrCx nanopowders. The microstructural features of a sintered ZrC0.6 sample were investigated via the measurements of XRD, TEM, and HRTEM. It was found that the carbon vacancies have an ordering arrangement in C sublattice, forming a Zr2C-type cubic superstructural phase with space group of Moreover, it was observed that the superstructural phase exists in nano-domains with an average size of ~30 nm owing to the ordering length in nanoscale. During the heating treatment in air, it was recognized that the diffusion of oxygen atoms is significantly facilitated through the ordered carbon vacancies. For the heating treatment at low temperature (<300°C), the oxygen atoms diffuse easily into and occupy the ordered carbon vacancies, forming the oxy-carbide of ZrC0.6O0.4 with ordered oxygen atoms. At the heating temperature higher than 350 °C an amorphous layer of ZrC0.6Oy>0.4 was identified to be formed due to the diffusion of superfluous oxygen atoms into Zr-tetrahedral centers. Inside the amorphous layer, the metastable tetragonal zirconia nanocrystals are recognized to be gradually developed.

Publisher

IGI Global

Reference88 articles.

1. A comparative study of the oxidation resistance of zirconium carbide and zirconium oxycarbide.;P.Barnier;European Journal of Solid State and Inorganic Chemistry,1988

2. The ordered distribution of carbon atoms in titanium carbide

3. Zirconia growth on zirconium carbide single crystals by oxidation

4. Zirconia growth on zirconium carbide single crystals by oxidation

5. High-Temperature Oxidation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3