Architectural Practices for Improving Fault Tolerance in a Service-Driven Environment

Author:

Ramanathan Raja1

Affiliation:

1. Independent Researcher, USA

Abstract

Enterprises that implement Service-driven applications face challenges relating to unprecedented scale, high availability, and fault-tolerance. There is exponential growth with respect to request volume in Service-driven systems, requiring the ability to provide multipoint access to shared services and data while preserving a single system image. Maintaining fault-tolerance in business services is a significant challenge due to their compositional nature, which instills dependencies among the services in the composition. This causes the dependability of the business services to be based on the reliability of the individual services in the composition. This chapter explores the architectural approaches such as service redundancy and design diversity, scaling, clustering, distributed data caching, in-memory data grid, and asynchronous messaging, for improving the dependability of services. It also explores the data scaling bottleneck in data centralization paradigms and illustrates how that presents significant scalability and fault-tolerance challenges in service-driven environments. Prevalent strategies to handle failure recovery such as backward and forward recovery mechanisms as well as the built-in mechanisms in WS-BPEL for exception handling and transactional compensation are discussed.

Publisher

IGI Global

Reference23 articles.

1. Data Grid tools: enabling science on big distributed data

2. The N-Version Approach to Fault-Tolerant Software

3. Baker, M. (Ed.). (2001). Cluster computing white paper. Retrieved from http://arxiv.org/ftp/cs/papers/0004/0004014.pdf

4. Management and Placement of Replicas in a Hierarchical Data Grid

5. Brewer, E. (2004). Towards robust distributed systems. Retrieved from http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3