Graph Intersection-Based Benchmarking Algorithm for Maximum Stability Data Gathering Trees in Wireless Mobile Sensor Networks

Author:

Meghanathan Natarajan1,Mumford Philip2

Affiliation:

1. Jackson State University, USA

2. Air Force Research Lab (RYWC), USA

Abstract

The authors propose a graph intersection-based benchmarking algorithm to determine the sequence of longest-living stable data gathering trees for wireless mobile sensor networks whose topology changes dynamically with time due to the random movement of the sensor nodes. Referred to as the Maximum Stability-based Data Gathering (Max.Stable-DG) algorithm, the algorithm assumes the availability of complete knowledge of future topology changes and is based on the following greedy principle coupled with the idea of graph intersections: Whenever a new data gathering tree is required at time instant t corresponding to a round of data aggregation, choose the longest-living data gathering tree from time t. The above strategy is repeated for subsequent rounds over the lifetime of the sensor network to obtain the sequence of longest-living stable data gathering trees spanning all the live sensor nodes in the network such that the number of tree discoveries is the global minimum. In addition to theoretically proving the correctness of the Max.Stable-DG algorithm (that it yields the lower bound for the number of discoveries for any network-wide communication topology like spanning trees), the authors also conduct exhaustive simulations to evaluate the performance of the Max.Stable-DG trees and compare to that of the minimum-distance spanning tree-based data gathering trees with respect to metrics such as tree lifetime, delay per round, node lifetime and network lifetime, under both sufficient-energy and energy-constrained scenarios.

Publisher

IGI Global

Reference32 articles.

1. A review of routing protocols for mobile ad hoc networks

2. Banerjee, T., Xie, B., Jun, J. H., & Agarwal, D. P. (2007). LIMOC: Enhancing the Lifetime of a Sensor Network with Mobile Cluster heads. In Proceedings of the Vehicular Technology Conference Fall (pp. 133-137), Baltimore, MD, USA: IEEE.

3. Stochastic Properties of the Random Waypoint Mobility Model

4. Mobility-based clustering protocol for wireless sensor networks with mobile nodes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3