Algorithms to Determine Stable Connected Dominating Sets for Mobile Ad Hoc Networks

Author:

Meghanathan Natarajan1

Affiliation:

1. Jackson State University, USA

Abstract

This chapter presents three algorithms to determine stable connected dominating sets (CDS) for wireless mobile ad hoc networks (MANETs) whose topology changes dynamically with time. The three stability-based CDS algorithms are (1) Minimum Velocity (MinV)-based algorithm, which prefers to include a slow moving node as part of the CDS as long as it covers one uncovered neighbor node; (2) Node Stability Index (NSI)-based algorithm, which characterizes the stability of a node as the sum of the predicted expiration times of the links (LET) with its uncovered neighbor nodes, the nodes preferred for inclusion to the CDS in the decreasing order of their NSI values; (3) Strong Neighborhood (SN)-based algorithm, which prefers to include nodes that cover the maximum number of uncovered neighbors within its strong neighborhood (region identified by the Threshold Neighborhood Ratio and the fixed transmission range of the nodes). The three CDS algorithms have been designed to capture the node size—lifetime tradeoff at various levels. In addition to presenting a detailed description of the three stability-based CDS algorithms with illustrative examples, the authors present an exhaustive simulation study of these algorithms and compare their performance with respect to several metrics vis-à-vis an unstable maximum density-based MaxD-CDS algorithm that serves as the benchmark for the minimum CDS Node Size.

Publisher

IGI Global

Reference11 articles.

1. Stochastic Properties of the Random Waypoint Mobility Model

2. Hierarchical location service for mobile ad-hoc networks

3. Kuhn, F., Moscibroda, T., & Wattenhofer, R. (2004). Unit disk graph approximation. In Proceedings of the Workshop on Foundations of Mobile Computing (pp. 17-23). Philadelphia, PA: ACM.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ML-LEACH;Proceedings of the Euro American Conference on Telematics and Information Systems;2018-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3