Stochastic Fatigue of a Mechanical System Using Random Transformation Technique

Author:

Kadry Seifedine1

Affiliation:

1. American University of the Middle East, Kuwait

Abstract

In this chapter, a new technique is proposed to find the probability density function (pdf) of a stress for a stochastic mechanical system. This technique is based on the combination of the Probabilistic Transformation Method (PTM) and the Finite Element Method (FEM) to obtain the pdf of the response. The PTM has the advantage of evaluating the probability density function pdf of a function with random variable, by multiplying the joint density of the arguments by the Jacobien of the opposite function. Thus, the “exact” pdf can be obtained by using the probabilistic transformation method (PTM) coupled with the deterministic finite elements method (FEM). In the method of the probabilistic transformation, the pdf of the response can be obtained analytically when the pdf of the input random variables is known. An industrial application on a plate perforated with random entries was analyzed followed by a validation of the technique using the simulation of Monte Carlo.

Publisher

IGI Global

Reference14 articles.

1. Round-Robin Crack Growth Predictions on Center-Cracked Tension Specimens under Random Spectrum Loading

2. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials

3. One dimensional transformation method in reliability analysis.;S.Kadry;Journal of Basic and Applied Sciences,2007

4. Kadry, S., & Younes, R. (2004). Etude probabiliste d’un systeme mecanique a parametres incertains par une technique basee sur la methode de transformation. Proceeding of CanCam, Canada.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3