Big Data Mining Based on Computational Intelligence and Fuzzy Clustering

Author:

Akhtar Usman1,Hassan Mehdi1

Affiliation:

1. Air University – Multan, Pakistan

Abstract

The availability of a huge amount of heterogeneous data from different sources to the Internet has been termed as the problem of Big Data. Clustering is widely used as a knowledge discovery tool that separate the data into manageable parts. There is a need of clustering algorithms that scale on big databases. In this chapter we have explored various schemes that have been used to tackle the big databases. Statistical features have been extracted and most important and relevant features have been extracted from the given dataset. Reduce and irrelevant features have been eliminated and most important features have been selected by genetic algorithms (GA).Clustering with reduced feature sets requires lower computational time and resources. Experiments have been performed at standard datasets and results indicate that the proposed scheme based clustering offers high clustering accuracy. To check the clustering quality various quality measures have been computed and it has been observed that the proposed methodology results improved significantly. It has been observed that the proposed technique offers high quality clustering.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3