Abstract
In this chapter, the progress of the development of glass capillary plates is described. In some applications, capillary plates have advantages over GEM or other gaseous detectors. For example, they are compatible with vacuum technology allowing them to be used in sealed gaseous detectors. Prototypes of capillary plates combined with photocathodes sensitive to ultraviolet and visible light were the first to be developed and successfully tested. These detectors resemble vacuum imaging microchannel plates, widely used in many applications. However, the glass capillary plates operate in gas atmosphere and in avalanche mode. This offers a possibility to build large area position-sensitive photomultipliers since at atmospheric pressure there are no serious mechanical constrains on the window. Since glass has a high density, the capillary plate can also be used as efficient convertors of X-rays, and be used at the same time as a multiplication structure for the created primary electrons. Such a device is attractive for X-ray and gamma ray imaging and the first successful tests of a prototype of such a detector are described.