A Human Affect Recognition System for Socially Interactive Robots

Author:

McColl Derek1,Nejat Goldie1

Affiliation:

1. University of Toronto, Canada

Abstract

This chapter presents a real-time robust affect classification methodology for socially interactive robots engaging in one-on-one human-robot-interactions (HRI). The methodology is based on identifying a person’s body language in order to determine how accessible he/she is to a robot during the interactions. Static human body poses are determined by first identifying individual body parts and then utilizing an indirect 3D human body model that is invariant to different body shapes and sizes. The authors implemented and tested their technique using two different sensory systems in social HRI scenarios to motivate its robustness for the proposed application. In particular, the experiments consisted of integrating the proposed body language recognition and affect classification methodology with imaging-based sensory systems onto the human-like socially interactive robot Brian 2.0 in order for the robot to recognize affective body language during one-on-one interactions.

Publisher

IGI Global

Reference42 articles.

1. The communication of friendly and hostile attitudes by verbal and non-verbal signals

2. Line of sight robot navigation toward a moving goal

3. Bonato, V., Sanches, A. K., Fernandes, M. M., Cardoso, J., Simoes, E., & Marques, E. (2004). A real time gesture recognition system for mobile robots. International Conference on Informatics in Control, Automation and Robotics (pp. 207-214).

4. Boucenna, S., Gaussier, P., Andry, P., & Hafemeister, L. (2010). Imitation as a communication tool for online facial expression learning and recognition. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5323-5328).

5. Bouguet, J. Y. (2010). Matlab calibration toolbox. Retrieved from http://www.vision.caltech.edu/bouguetj/calib_doc/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3